
NetHide: Secure and Practical
Network Topology Obfuscation

Roland Meier(1), Petar Tsankov(1), Vincent Lenders(2),
Laurent Vanbever(1), Martin Vechev(1)

nethide.ethz.ch

USENIX Security 2018

(2)(1)

http://nsg.ee.ethz.ch

 2

Public serversBotnet

Link-flooding attacks (LFAs)  
target the infrastructure

 3

Public serversBotnet

Low-rate, legitimate flows 
spread over many endpoints

 4

Link-flooding attacks (LFAs)  
target the infrastructure

 5

Public serversBotnet

Low-rate, legitimate flows 
spread over many endpoints

Link-flooding attacks (LFAs)  
require knowing the topology

 6

Public serversBotnet

?

Public serversBotnet

 7

Public serversBotnet

 8

$ traceroute X

1

X

Public serversBotnet

 9

$ traceroute X

1

X

UDP

dst = X

TTL = 1

Public serversBotnet

 10

$ traceroute X

1 —A— 1.755 ms

A

ICMP

TTL Exceeded

src = A

X

UDP

dst = X

TTL = 1

Public serversBotnet

 11

$ traceroute X

1 —A— 1.755 ms

2

A X

UDP

dst = X

TTL = 2

Public serversBotnet

 12

$ traceroute X

1 —A— 1.755 ms

2

A X

UDP

dst = X

TTL = 2

UDP

dst = X

TTL = 1

Public serversBotnet

 13

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

A

ICMP

TTL Exceeded

src = B

X

UDP

dst = X

TTL = 2

UDP

dst = X

TTL = 1

B

Public serversBotnet

 14

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

3 —C— 0.880 ms

A

B

C

ICMP

TTL Exceeded

src = C

X

UDP

dst = X

TTL = 3

Public serversBotnet

 15

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

3 —C— 0.880 ms

4 —D— 0.929 ms

A

B

C

D
ICMP

TTL Exceeded

src = D

X

UDP

dst = X

TTL = 4

Public serversBotnet

 16

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

3 —C— 0.880 ms

4 —D— 0.929 ms

5 —E— 0.827 ms

A

B

C

D
E

ICMP

TTL Exceeded

src = E

X

UDP

dst = X

TTL = 5

Public serversBotnet

 17

$ traceroute X

1 —A— 1.755 ms

2 —B— 1.062 ms

3 —C— 0.880 ms

4 —D— 0.929 ms

5 —E— 0.827 ms

6 —X— 0.819 ms
A

B

C

D
E

ICMP

TTL Exceeded

src = X

X

UDP

dst = X

TTL = 6

Learning large topologies 
by combining many path measurements

 18

Measuring ISP Topologies with Rocketfuel

Neil Spring Ratul Mahajan David Wetherall

{nspring,ratul,djw}@cs.washington.edu
Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

ABSTRACT
To date, realistic ISP topologies have not been accessible to the re-
search community, leaving work that depends on topology on an
uncertain footing. In this paper, we present new Internet mapping
techniques that have enabled us to directly measure router-level ISP
topologies. Our techniques reduce the number of required traces
compared to a brute-force, all-to-all approach by three orders of
magnitude without a significant loss in accuracy. They include the
use of BGP routing tables to focus the measurements, exploiting
properties of IP routing to eliminate redundant measurements, bet-
ter alias resolution, and the use of DNS to divide each map into
POPs and backbone. We collect maps from ten diverse ISPs using
our techniques, and find that our maps are substantially more com-
plete than those of earlier Internet mapping efforts. We also report
on properties of these maps, including the size of POPs, distribu-
tion of router outdegree, and the inter-domain peering structure. As
part of this work, we release our maps to the community.

Categories and Subject Descriptors
C.2.1 [Communication Networks]: Architecture and Design—
topology

General Terms
Measurement

1. INTRODUCTION
Realistic Internet topologies are of considerable importance to

network researchers. Topology influences the dynamics of routing
protocols [2, 10], the scalability of multicast [17], the efficacy of
proposals for denial-of-service tracing and response [16, 11, 21,
22], and other aspects of protocol performance [18].
Sadly, real topologies are not publicly available because ISPs

generally regard their router-level topologies as confidential. Some
ISPs publish simplified topologies on theWeb, but these lack router-
level connectivity and POP structure and may be optimistic or out
of date. There is enough uncertainty in the properties of real ISP
topologies (such as whether router outdegree distribution follows a
power law as suggested in [7]) that it is unclear whether synthetic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’02, August 19-23, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-570-X/02/0008 ...$5.00.

topologies generated by tools such as GT-ITM [26] or Brite [12]
are representative [25].
The main contribution of this paper is to present new measure-

ment techniques to infer high quality ISP maps while using as few
measurements as possible. Our insight is that routing information
can be exploited to select the measurements that are most valuable.
One technique, directed probing, uses BGP routing information to
choose only those traceroutes that are likely to transit the ISP being
mapped. A second technique, path reductions, suppresses tracer-
outes that are likely to follow redundant paths through the ISP net-
work. These two techniques reduce the number of traces required
to map an ISP by three orders of magnitude compared to a brute-
force, all-to-all approach, and we show that the savings do not come
at a high cost in terms of accuracy. We also describe a new solution
to the alias resolution problem of clustering the interface IP ad-
dresses listed in a traceroute into their corresponding routers. Our
new, pair-wise alias resolution procedure finds three times as many
aliases as prior techniques. Additionally, we use DNS information
to break the ISP maps into backbone and POP components, com-
plete with their geographical location.
We used our techniques to map ten diverse ISPs – Abovenet,

AT&T, Ebone, Exodus, Level3, Sprint, Telstra, Tiscali (Europe),
Verio, and VSNL (India) – by using over 750 publicly available
traceroute sources as measurement vantage points. These maps are
summarized in the paper.
Three ISPs, out of the ten we measured, helped to validate our

maps. We also estimate the completeness of our maps by scan-
ning ISP IP address ranges for routers that we might have missed,
and by comparing the peering links we find with those present in
BGP routing tables. Our maps reveal more complete ISP topolo-
gies compared to earlier efforts; we find roughly seven times more
routers and links in our area of focus than Skitter [6].
As a second contribution, we examine several properties of the

maps that are both of interest to researchers and likely to be useful
for generating synthetic Internet maps. We report new results for
the distribution of of POP sizes and the number of times that an
ISP connects with other networks. Both distributions have signifi-
cant tails. We also characterize the distribution of router outdegree,
repeating some of the analysis in [7] with richer data.
Finally, as one goal of our work and part of our ongoing valida-

tion effort, we are publicly releasing the ISP network maps inferred
from our measurements. We are also making the entire raw mea-
surement data available to researchers; all our maps are constructed
with end-to-end measurements and without the benefit of confiden-
tial information. The maps and data are available at [20].
The rest of this paper is organized as follows. In Sections 2

and 3, we describe our approach and the mapping techniques re-
spectively. The implementation of our mapping engine, Rocket-

133

So the solution is to hide the topology?

yes, but…

 20

traceroute is an essential debugging tool

So the solution is to hide the topology?

parts of

So the solution is to hide the topology?

which parts?

how?

parts of

NetHide: Secure and Practical  
Network Topology Obfuscation

 23

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

Reactive and proactive strategies

to mitigate link-flooding attacks

 24

Reactive

Proactive

Reactive and proactive strategies

to mitigate link-flooding attacks

 25

Reactive act upon detecting a LFA

Proactive

[CoDef, Liaskos, SPIFFY]

▸ cannot prevent LFAs 
▸ impact on production traffic

Reactive and proactive strategies

to mitigate link-flooding attacks

 26

Reactive act upon detecting a LFA

Proactive Aim at preventing LFAs

[CoDef, Liaskos, SPIFFY]

[HoneyNet, Linkbait, Trassare]

▸ cannot prevent LFAs 
▸ impact on production traffic

▸ make debugging tools unusable

Reactive and proactive strategies

to mitigate link-flooding attacks

 27

Reactive act upon detecting a LFA

Proactive Aim at preventing LFAs

[CoDef, Liaskos, SPIFFY]

[HoneyNet, Linkbait, Trassare]

[NetHide]

▸ cannot prevent LFAs 
▸ impact on production traffic

▸ make debugging tools unusable

NetHide: Secure and Practical  
Network Topology Obfuscation

 28

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

Topology obfuscation 
as an optimization problem

 29

Given the physical topology P,

compute a virtual topology V, such that

V is robust against link-flooding attacks

V has maximal practicality

Given the physical topology P,

compute a virtual topology V, such that

V is robust against link-flooding attacks

V has maximal practicality

Topology obfuscation 
as an optimization problem

 30

Attacker can run flows between 
pairs of routers

 31

controls a set of hosts
i.e. a botnet

has a budget of flows to run
flows between nodes (routers)

has no prior knowledge about topology
learns topology e.g. through traceroute

Attacker

A topology is robust against LFAs,  
if the flow density of each link does not exceed its capacity

 32

Links in V Capacity of the link  
(max # of flows)

Flow density of the link  
(# of flows using it)

∀l ∈ L′� : fd(l) ≤ c(l)

A topology is robust against LFAs,  
if the flow density of each link does not exceed its capacity

 33

Links in V Capacity of the link  
(max # of flows)

Flow density of the link  
(# of flows using it)

∀l ∈ L′� : fd(l) ≤ c(l)

A topology is robust against LFAs,  
if the flow density of each link does not exceed its capacity

 34

Links in V Capacity of the link  
(max # of flows)

Flow density of the link  
(# of flows using it)

∀l ∈ L′� : fd(l) ≤ c(l)

Two basic strategies for attacking the virtual topology  
despite obfuscation

 35

Invert obfuscation
and attack based on physical topology

“guess” a promising attack
based on the virtual topology

▸ Infeasible (more later)

▸ Incurs high overhead for attacker (see paper)

Given the physical topology P,

compute a virtual topology V, such that

V is robust against link-flooding attacks

V has maximal practicality

Topology obfuscation 
as an optimization problem

 36

Accuracy and utility measure  
the closeness of P and V

 37

Virtual paths are  
similar to physical paths

Failures in P  
are reflected in V

Accuracy and utility measure  
the closeness of P and V

 38

Virtual paths are  
similar to physical paths

Accuracy

Failures in P  
are reflected in V

A B C D

A B X D X Y Z

Accuracy and utility measure  
the closeness of P and V

 39

Virtual paths are  
similar to physical paths

Utility

Accuracy

Failures in P  
are reflected in V

A B C D

A B X D X Y Z

A B C DX

A C B DX X Y ZX X

Given the physical topology P,

compute a virtual topology V, such that

V is robust against link-flooding attacks

V has maximal practicality

Topology obfuscation 
as an optimization problem

 40

NetHide optimizes over a random sample of solutions

to improve performance and security

 41

𝒪(NN)

topology size 
(# of routers)

all possible solutions

𝒪(N)
random sample

better performance
harder to invert obfuscation
still high accuracy and utility

NetHide: Secure and Practical  
Network Topology Obfuscation

 42

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment

 43

it scales to large networks

Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment

 44

it scales to large networks

Maintaining the utility of debugging tools 
requires sending packets through the actual network

 45

Answer from a central controller

Answer at the edge

Answer in a virtual clone of the network

Answer from the correct device  
that appears on the path

Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment

 46

it scales to large networks

Programmable network devices allow 
modifying tracing packets at line rate

 47

Read & modify packet headers
e.g. the TTL value

Basic operations
e.g. hash functions and checksums

Add or remove custom headers
to store information

Programmable network devices 
are configured through match+action tables

 48

X

Y

If I receive a packet to X with TTL = i,  
I should send it to Y with TTL = j

Deploy the virtual topology V, such that

debugging tools still work

network performance is not impacted

Utility-preserving 
topology deployment

 49

it scales to large networks

Encoding state in packets 
instead of storing it in devices

 50

src IP dst IP TTL

src port dst port

payload

IP

UDP

src IP dst IP TTL

src port dst port

payload

IP

Y src IP TTL

TTL exceeded

IP

ICMP

UDP

D Y 1

src port 9999

payload

IP

UDP

src IP dst IP TTL

src port dst port

signature

meta

UDP

D Y 1

src port 9999

payload

IP

UDP

src IP dst IP TTL

src port dst port

signature

meta

Y D TTL

TTL exceeded

IP

ICMP

UDP

D Y

NetHide: Secure and Practical  
Network Topology Obfuscation

 51

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

We evaluated various aspects of NetHide  
based on 3 real topologies

 52

Abilene

Switch

US Carrier

Accuracy and utility

Performance

Timing

Partial deployment

Security

We evaluated various aspects of NetHide  
based on 3 real topologies

 53

Abilene

Switch

US Carrier

Accuracy and utility

Performance

Timing

Partial deployment

Security

 54

0

0

100%

100%

Accuracy

Flow density reduction

0

0

100%

100%

Utility

Flow density reduction

Ratio between the flow density  
in the physical and the virtual topology

0.0 0.2 0.4 0.6 0.8 1.0
Flow density reduction factor

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
ac

cu
ra

cy

0.0 0.2 0.4 0.6 0.8 1.0
Flow density reduction factor

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ut
ilit

y

0.0 0.2 0.4 0.6 0.8 1.0
Flow density reduction factor

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f p
at

hs
 w

ith
 a

cc
=1

00
%

High protection 
with small impact on accuracy and utility

 55

0

0

0.0 0.2 0.4 0.6 0.8 1.0
Flow density reduction factor

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Flow density reduction factor

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

ut
ilit

y
0.0 0.2 0.4 0.6 0.8 1.0
Flow density reduction factor

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f p
at

hs
 w

ith
 a

cc
=1

00
%

100%80%

94%
100%

Accuracy

Flow density reduction

0

0

100%80%

100%

Utility

Flow density reduction

be
tte

r

be
tte

r

68%

83%

25%

NetHide

Random

82% of paths not
changed at all

NetHide: Secure and Practical  
Network Topology Obfuscation

NetHide deploys the virtual topology  
using programmable networks

NetHide works for realistic topologies  
and maintains the utility of debugging tools

NetHide computes a secure virtual topology  
that is similar to the physical topology

nethide.ethz.ch

NetHide: Secure and Practical Network Topology Obfuscation

Roland Meier
�
, Petar Tsankov

�
, Vincent Lenders

⇧
, Laurent Vanbever

�
, Martin Vechev

�

�
ETH Zürich,

⇧
armasuisse

nethide.ethz.ch

NetHide: Secure and Practical Network Topology Obfuscation

Roland Meier
�
, Petar Tsankov

�
, Vincent Lenders

⇧
, Laurent Vanbever

�
, Martin Vechev

�

�
ETH Zürich,

⇧
armasuisse

nethide.ethz.ch

Link-Flooding Attacks: DDoS against network core

Botnet Public servers ⇤ Low-rate, legitimate flows

spread over many endpoints

⇤ Flows concentrate at target

link and lead to congestion

Require knowledge about the
topology & forwarding behavior

NetHide: Proactive LFA defense

NetHide obfuscates a network topology such

that an attacker does not see attackable links.

Challenge: Trade-off between

⇤ Security: Hide enough such that an

attacker can not perform the attack

⇤ Practicality: Do not hide too much

for legitimate use of diagnostic tools

NetHide hides the vulnerable physical topology and shows a secure virtual topology

Input Topology obfuscation

Physical topology

A

B

E

FC D Accuracy

Accuracy

compare (,)

compare (,)

Utility for failure of link (D,E)________

compare (,)

compare (,)

Utility for failure of link (D,E)________

Topology deployment

using programmable network devices

Virtual topology

A

B

E

FC D

dst TTL actions

E 2 TTL=3,
dst=D

Random sample of
candidate solutions

Select topology with maximal accuracy and utility (V2)

bottleneck
link (C,D)

virtual link
= 2 common

= 2 common

observe failure (A,E)

observe no failure P

O

= 3 common

= 3 common

observe failure (D,E)

observe no failure P

P

… … …

dst TTL actions

A 3 TTL=4
… … …

dst TTL actions

F 3 TTL=4
… … …

dst TTL actions

B 3 TTL=4
… … …

c(C,D) < fd(C,D)

§ Physical topology

§ Routing behavior

§ Set of flows

§ Capacity of each link

Input:

V1

V2

Deriving a secure and practical topology

Given a physical topology P , NetHide computes

a virtual topology V with the following properties:

⇤ V is secure (no LFA possible);

⇤ Path that a packet takes in V is similar to P ;

⇤ Link failures in P are accurately observed in V .

Network users only see the virtual topology

NetHide uses programmable network devices to rewrite

probing packets (e.g. from traceroute) such that:

⇤ The observed paths match the virtual topology;

⇤ Link failures can be detected;

⇤ There is no impact on the network performance.

NetHide works in practice

⇤ Evaluation with 3 real topologies:

Abilene (11 nodes), Switch (42), US Carrier (158)

⇤ Increasing the security by 80%

changes < 20% of the paths (Switch)

⇤ > 90% of the link failures can be precisely tracked back

This work was partly supported by armasuisse Science and Technology (S+T) under the Zurich Information Security and Privacy (ZISC) grant.

Join me at the  
poster session

